National Eye Institute Awards R01 to SEI Investigator
Apr 1, 2015 - Jun 30, 2015
Project Number: 2R01EY012676-13A1 Contact PI / Project Leader: BRUNKEN, WILLIAM J
Title: ROLE OF EXTRACELLULAR MATRIX IN RETINAL DEVELOPMENT AND DISEASE Awardee Organization: UPSTATE MEDICAL UNIVERSITY
Description
Abstract Text:
DESCRIPTION (provided by applicant): The immediate goal of our project is to understand the role of the extracellular matrix in retinal development and disease. In prior funding periods, we identified unique isoforms of laminins, containing either the ß2 or 3 chains that are expressed in the eye and brain. Mutations in these two laminin genes, in humans, result in autism, ocular dysgenesis, and kidney dysfunction. Ablation of these genes, in mouse, produce cortical and ocular dysgenesis; the latter includes disruptions of: 1) retinal ganglion cell development; 2) astrocyte migration and subsequent vascular development; 3) the sub-cellular organization of the Müller cell; 4) the photoreceptor- bipolar synapse. Our fundamental hypothesis is that laminins are critical for establishing the three dimensional structure of the retina. Specifically, we hypothesize that laminins provide environmental cues that are essential for angiogenesis and neurogenesis. Our first aim explores the contributions of laminin signaling in formation of the template for angiogenic development. The working hypothesis is that RGCs drive astrocyte migration; then, interactions between astrocytes and microglia regulate endothelial development. We will use a reverse genetic approach, deleting Lamb2 or Lamc3 genes alone, or together, to disrupt the signaling among these cells. The first set of experiments will focus on the spatial patterning in Lamb2-/- and Lamc3-/- animals. Our second set of experiments will address the role of laminin-mediated recruitment and activation of microglia. The third set of experiments will examine the effectors of laminin signaling in endothelial cells during angiogenesis. Our current data suggest that ß2-containing laminins are pro-angiogenic and ¿3-containing laminins are anti-angiogenic. Our second aim is focused on the role of laminins in neurogenesis. We will examine the hypothesis that laminin regulates apical-basal polarity of the radially organized progenitor. Our published data demonstrate that Müller cell compartmentalization is disrupted in the Lamb2-/- retina. Moreover, our preliminary data demonstrate that the cell cycle is dysregulated in both Lamb2-/- and Lamc3-/- mice. Our first set of experiments will focus on the regulation of symmetric versus asymmetric division in the Lamb2-/- and Lamc3-/- retina. Next, we will turn to a study of the pattern of inheritance of important cell cycle regulators in these same mice. Last, we will measure directly the cell cycle regulation in Lamb2-/- and Lamc3-/- retina. Our preliminary data suggest that ß2- and 3-containing laminins are necessary to preserve the proliferative state. Our work is relevant to an understanding of the pathobiology of retinal neovascular disease, gliosis and proliferative vitreoretinopathy because astrocytes and microglia play critical roles in retinal vascularization and remodeling. Our work on retinal progenitor cells will improve our fundamental understanding of retinal development and our understanding of the regulation of the cell cycle in CNS progenitors and will influence the development of 3D culture systems designed to grow retina ex vivo.
Public Health Relevance Statement:
PUBLIC HEALTH RELEVANCE: The extracellular matrix (ECM) surrounds cells providing them with environmental signals during development and stabile substrates for attachment and migration throughout life. Many human diseases are caused by disruptions of the ECM including metastatic cancer, proliferative neo-vascular disease, acquired auto-immune diseases, glaucoma and congenital birth defects. Many of the latter affect eye and brain and lead to impaired vision or blindness with mental retardation. This project investigates the role of ECM in retinal development and the results of these studies will lead to new diagnostics for ocular disease, both genetic and acquired, and will lead to the development of new therapeutics.
Project Terms:
Ablation; Address; Affect; Anatomy; angiogenesis; Animals; Apical; Astrocytes; Autistic Disorder; base; Behavior; Biological Assay; Blindness; Blood Vessels; Brain; cell behavior; Cell Cycle; Cell Cycle Regulation; cell motility; Cell Proliferation; Cells; Complex; Congenital Abnormality; Cues; Cytokinesis; Data; design; Development; Disease; Disseminated Malignant Neoplasm; Endothelial Cells; exhaust; Extracellular Matrix; Eye; Functional disorder; Funding; Genes; Genetic; Gliosis; Goals; Human; human disease; Hydrophthalmos; Image; Imaging technology; Immune System Diseases; improved; in vivo; Inheritance Patterns; Inherited; insight; Kidney; Laminin; Lead; Length; Life; Measures; Mediating; Mental Retardation; Methods; Microglia; migration; Mitosis; Molecular; Mus; mutant; Mutation; neovascular; Nephrosis; neurogenesis; notch protein; novel diagnostics; novel therapeutics; Pattern; Phenocopy; Photoreceptors; Play; polymerization; positional cloning; Positioning Attribute; progenitor; Proliferative Vitreoretinopathy; Protein Isoforms; Protein Kinase C; Proteins; public health relevance; Publishing; receptor; Regulation; research study; Retina; Retinal; retinal angiogenesis; Retinal Ganglion Cells; retinal progenitor cell; Role; Signal Pathway; Signal Transduction; Spatial Distribution; Synapses; System; three dimensional structure; Time; Tissue Engineering; Vascular Diseases; Vascularization; Vision; Work

 

State University of New York Medical Centers & College of Optometry Consortium

There are no products in your shopping cart.