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Perimetric testing is used clinically to detect 
visual field abnormalities and to monitor changes 
during the course of management. Conventional 
automated perimetry (CAP), which employs 
small (0.43 degree) targets (Fig. 1), is hampered 
by high test-retest variability. Consequently, 
many tests are required in order to determine 
whether a patient is stable or progressing. 
Decreasing test-retest variability would enable 
clinicians to detect progression with fewer tests.1

Test-retest variability for CAP is inversely 
related to retinal sensitivity, which varies as a 
function of distance from fixation and in the 
presence of disease.2,3 Test-retest variability is 
also influenced by the use of high stimulus 
contrast which can saturate ganglion cell 
responses and by variations in prereceptoral 
factors such as refractive status, pupil diameter, 
and density of the crystalline lens.4,5 For CAP, 
there is an inverse relationship between optical 
blur and sensitivity. Hence, patients require 

accurate refractive correction prior to testing.6-11 
Pupillary diameter (area) and density of 

the crystalline lens are factors that contribute 
to retinal illuminance (the amount of light 
originating from a stimulus and background that 
reaches the sensory retina). For subjects with 
clear ocular media and pupil diameter of 3 mm 
or greater, adherence to Weber’s law ensures 
that sensitivity will be relatively unaffected by 
changes in retinal illuminance in conventional 
perimetry.

FDT perimetry, a form of contrast sensitivity 
perimetry, uses larger (5-10 degree), 0.25–0.50 
cycle/degree targets with rapid (18/25 Hz) 
temporal counterphase flicker, for which high 
mean luminances are required to reach the Weber 
region. Previous studies have demonstrated 
that, while variability for FDT perimetry does 
not increase as a function of sensitivity,12 results 
can be dramatically affected by changes in 
retinal illuminance (e.g., lenticular density or 

Figure 1. Conventional automated permetry stimulus and luminance profile.
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pupil diameter).13,14 Pupil diameter can be highly 
variable across subjects; for the 100 cd/m2 mean 
luminance of the FDT perimeter, pupil diameter 
in a normal population varies from less than 2 
to 8 mm.15 FDT perimetry is less influenced by 
the effects of optical blur, i.e. up to 4 diopters 
of refractive error.16

Swanson and colleagues17 developed a 
quantitative model of the effects of ganglion 
cell damage on responses of cortical cells. This 
model allowed predictions relating ganglion 
cell damage to perimetric loss for a wide range 
of stimuli. Pan, Swanson and Dul18 used this 
model to develop stimuli designed to have 
lower test-retest variability than conventional 
perimetry while retaining good sensitivity to 
defects. Our conclusion was that stimuli should 
preferentially stimulate cortical cells tuned to 
lower spatial frequencies (Fig.2). We then tested 
this prediction with two stimuli: an achromatic 
0.5 cycle/degree sinusoidal grating patch (a 
Gabor patch, with a circular two-dimensional 
Gaussian window), and a chromatic incremental 
stimulus with diameter set to chromatic Ricco’s 
area at each visual field location, found that both 
stimuli have an advantage over conventional 
perimetric stimuli and confirmed the prediction.

The use of Gabor stimuli had been termed 
“contrast sensitivity perimetry” (CSP).19 We have 
developed a customized station to introduce this 
form of perimetry in a clinical setting (Fig. 3).

The present studies evaluated the effects of 

retinal illuminance and optical blur in control 
eyes over the range of retinal illuminances 
expected in clinical populations (normal 
variations in pupil diameter, refractive error and 
lenticular density), in an effort to optimize CSP 
stimuli for clinical use.

Figure 2. Contrast sensitivity perimetry stimulus and luminance profile.

Figure 3. Customized testing station of contrast 
sensitivity perimetry.
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